Nombre y apellidos: ______S O L U C I O N E S _____

DNI:

Primer examen de ev. cont – P

nota sobre 10

Pregunta 1 $(5 \, \mathrm{pt.})$

Sean z = -2 - i, y $w = 2e^{i\pi/4}$.

- (.5 pt.) (a) Representa gráficamente en un mismo sistema de coordenadas los números complejos $z, \bar{z}, w, \overline{w}$. (Recuerda: Un solo par de ejes coordenados con los cuatro puntos representados.)
- (1.5 pt.) (b) Calcula la parte real, la parte imaginaria, el módulo y el argumento de los siguientes números:

$$z\bar{z}, \quad \frac{\bar{z}}{z}, \quad zw.$$

(1 pt.) (c) Sabiendo que la función seno hiperbólico está definida por senh $x = \frac{e^x - e^{-x}}{2}$, usa la fórmula de Euler para comprobar que

senh
$$\left(i\frac{\pi}{3}\right)$$

es un número imaginario puro y calcula su valor.

(2 pt.) (d) Como el polinomio $x^4 + 16$ tiene coeficientes reales, sabemos que las soluciones no reales de

$$x^4 + 16 = 0$$

aparecen en pares conjugados. Halla las 4 soluciones de dicha ecuación y comprueba que las no reales forman pares conjugados.

Solución:

(a)

(b)
$$z\bar{z} = 2^2 + 1^2 = 5 = 5 + 0i$$
. $\bar{z}/z = \bar{z}^2/5 = \frac{4 - 1 - 4i}{5}$.

$$zw = \sqrt{5}e^{i(\pi + \arctan\frac{1}{2})} \cdot 2e^{\frac{\pi}{4}} = (-2 - i)2(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) = -\sqrt{2}(1 + 3i).$$

Así que las respuestas son:

٠.	BOII.					
		Re	Im	•	arg	
	$z\bar{z}$	5	0	5	0	
	$rac{ar{z}}{z}$	3/5	-4/5	1	$\arctan(-4/3)$	
	zw	$-\sqrt{2}$	$-3\sqrt{2}$	$2\sqrt{5}$	$\frac{5\pi}{4}\arctan(1/2)$	

- (c) $\operatorname{sen}(i\frac{\pi}{3}) = \frac{e^{i\frac{\pi}{3}} e^{-i\frac{\pi}{3}}}{2} = \frac{1}{2}(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \cos\frac{\pi}{3} + i\sin\frac{\pi}{3})\frac{1}{2}2i\sin\frac{\pi}{3} = i\sqrt{3}/2.$
- (d) Las soluciones son las cuatro raices cuartas de -16 que son el doble de las cuatro raices cuartas de -1. Estas últimas son las dos raices cuadradas de i y las dos raices cuadradas de -i. Así que:

$$x_1 = \frac{1}{\sqrt{2}}(1+i), \quad x_2 = -\frac{1}{\sqrt{2}}(1+i), \quad x_3 = \frac{1}{\sqrt{2}}(1-i), \quad x_4 = -\frac{1}{\sqrt{2}}(1-i).$$

Nombre y apellidos: ______ S O L U C I O N E S _____ DNI: _

Pregunta 2 $_{(5\,\mathrm{pt.})}$

Contesta los siguientes apartados suponiendo que A es una matriz que cumple: (1) tiene 3 filas y 4 columnas, (2) tiene forma escalonada, (3) su última columna es una columna pivote, (4) tiene en total 2 columnas pivote y (5) contiene un bloque igual a la siguiente matriz

$$(1 \quad 2 \quad 3)$$
.

- $_{(1 \text{ pt.})}$ (a) Contesta razonadamente: El sistema $A\mathbf{x} = \mathbf{0}$ ¿tiene alguna solución no trivial?. El sistema $A\mathbf{x} = \mathbf{b}$ ¿tiene solución (es consistente) para todo $\mathbf{b} \in \mathbf{R}^3$?.
- (1 pt.) (b) Escribe un vector $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \mathbf{R}^3$ y escribe un vector no nulo $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \in \mathbf{R}^3$ tales que el sistema $A\mathbf{x} = \mathbf{y}$ sea inconsistente y el sistema $A\mathbf{x} = \mathbf{b}$ sea consistente.
- (3 pt.) (c) Escribe una matriz que cumpla las propiedades de la matriz A arriba indicadas y halla la solución general del sistema $A\mathbf{x} = \mathbf{b}$ escribiéndola en forma vectorial paramétrica (toma para \mathbf{b} el vector que escribiste en el apartado anterior).

Solución:

- (a) El sistema $A\mathbf{x} = \mathbf{0}$ tiene solución no trivial porque la matriz de coeficientes tiene dos columnas sin pivote. El sistema $A\mathbf{x} = \mathbf{b}$ no tiene solución para todo $\mathbf{b} \in \mathbf{R}^3$ porque la matriz de coeficientes tiene una fila de ceros.
- (b) Para y basta que el tercer elemento sea no nulo y para b basta que el tercer elemento sea nulo::

$$\mathbf{y} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

(c) $A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Ya está en forma escalonada reducida y la solución es:

$$\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -3 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$